Introduction to Marine Biotechnology
Marine biotechnology is an innovative field of research in science and technology concerning the support of living organisms with marine products and tools. To understand the omics of the living species: it is a novel way to produce genetically modified food, drugs, and energy to overcome global demand. The exploitation of biotechnology for drug discovery, including enzymes, antibiotics, and biopolymers, chemical compounds from marine sources are deliberated in this book. The concepts of marine microbiology and molecular biology are explored extensively in the present book. Biomedical applications of marine biomaterials such as tissue engineering, drug delivery, gene delivery, and biosensor areas are thoroughly discussed. Bioenergy from marine sources is a groundbreaking achievement in the field of marine biotechnology and is also covered in this book. Finally, industrial uses of marine-derived products are explored for mankind.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 277.13 Price includes VAT (France)
Hardcover Book EUR 344.11 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Emerging Trends of Biotechnology in Marine Bioprospecting: A New Vision
Chapter © 2020
Marine Biomaterials: Resources, Categories, and Applications
Chapter © 2022
Marine Biotechnology and Its Applications in Drug Discovery
Chapter © 2023
Abbreviations
Census of Marine Life
enzyme-linked immunosorbent assay
Food and Agriculture Organization
human immunodeficiency virus
herpes simplex virus
Organization for Economic Cooperation and Development
polymerase chain reaction
polyunsaturated fatty acid
transcription mediated amplification
References
- J.W. Nybakken: Marine Biology: An Ecological Approach (Harper Collins, New York 1993) Google Scholar
- X. Irigoien, J. Huisman, R.P. Harris: Global biodiversity patterns of marine phytoplankton and zooplankton, Nature 429, 863–867 (2004) ArticleCASGoogle Scholar
- J.H. Steele: A comparison of terrestrial and marine ecological systems, Nature 313, 355–358 (1985) ArticleGoogle Scholar
- J.G. Burgess: New and emerging analytical techniques for marine biotechnology, Curr. Opin. Biotechnol. 23, 29 (2012) ArticleCASGoogle Scholar
- D.A. Caron, P.D. Countway, A.C. Jones, D.Y. Kim, A. Schnetzer: Marine protistan diversity, Annu. Rev. Mar. Sci. 4, 467–493 (2012) ArticleGoogle Scholar
- D. Regan: Marine biotechnology and the use of arid zones, Search 11, 377–381 (1980) Google Scholar
- R.R. Colwell: Biotechnology in the marine sciences, Science 222, 19–24 (1983) ArticleCASGoogle Scholar
- FAO: FAO statement on biotechnology. Biotechnology in food and agriculture, available online at http://www.fao.org/Biotech/stat.asp (2000)
- R.A. Zilinskas, R. Colwell, D. Lipton, R. Hill: The Global Challenge of Marine Biotechnology: A Status Report on the United States, Japan, Australia, and Norway (Maryland Sea Grant College, College Park, MD 1995) Google Scholar
- N.L. Thakur, A.N. Thakur: Marine Biotechnology: an overview, Indian J. Biotechnol. 5, 263 (2006) CASGoogle Scholar
- Flanders Marine Institute (VLIZ): http://www.coastalwiki.org/wiki/Category:Marine_Biotechnology
- W. Lakra, S. Ayyappan: Recent advances in biotechnology applications to aquaculture, Asian Australas. J. Anim. Sci. 16, 455–462 (2003) ArticleCASGoogle Scholar
- C.A. Hoover, M. Slattery, A.G. Marsh: A functional approach to transcriptome profiling: Linking gene expression patterns to metabolites that matter, Mar. Biotechnol. 9, 411–419 (2007) ArticleCASGoogle Scholar
- J. Kennedy, J.R. Marchesi, A.D. Dobson: Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments, Microb. Cell Fact. 7, 27 (2008) ArticleGoogle Scholar
- A.C. Freitas, D. Rodrigues, T.A. Rocha-Santos, A.M. Gomes, A.C. Duarte: Marine biotechnology advances towards applications in new functional foods, Biotechnol. Adv. 30, 1506–1515 (2012) ArticleCASGoogle Scholar
- M.A. Borowitzka: Commercial production of microalgae: Ponds, tanks, and fermenters, Prog. Ind. Microbiol. 35, 313–321 (1999) ArticleGoogle Scholar
- P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert: Commercial applications of microalgae, J. Biosci. Bioeng. 101, 87–96 (2006) ArticleCASGoogle Scholar
- R.J. Radmer: Algal diversity and commercial algal products, Bioscience 46, 263–270 (1996) ArticleGoogle Scholar
- D. Leary, M. Vierros, G. Hamon, S. Arico, C. Monagle: Marine genetic resources: A review of scientific and commercial interest, Mar. Policy 33, 183–194 (2009) ArticleGoogle Scholar
- J.J. Milledge: Commercial application of microalgae other than as biofuels: A brief review, Rev. Environ. Sci. Bio/Technology 10, 31–41 (2011) ArticleGoogle Scholar
- T. Rustad, I. Storrø, R. Slizyte: Possibilities for the utilisation of marine by-products, Int. J. Food Sci. Technol. 46, 2001–2014 (2011) ArticleCASGoogle Scholar
- J.F. Imhoff, A. Labes, J. Wiese: Bio-mining the microbial treasures of the ocean: New natural products, Biotechnol. Adv. 29, 468–482 (2011) ArticleCASGoogle Scholar
- B.H. Buck: Marine Biotechnology in Germany: Aquaculture in the Open Ocean (King Mongkuts University of Technology North, Bangkok 2011) Google Scholar
- Y. Tal, H.J. Schreier, K.R. Sowers, J.D. Stubblefield, A.R. Place, Y. Zohar: Environmentally sustainable land-based marine aquaculture, Aquaculture 286, 28–35 (2009) ArticleGoogle Scholar
- R.J. Ritchie, K. Guy, J.C. Philp: Policy to support marine biotechnology-based solutions to global challenges, Trends Biotechnol. 31, 128–131 (2013) ArticleCASGoogle Scholar
- M.C. Alvarez, J. Bejar, S. Chen, Y. Hong: Fish ES cells and applications to biotechnology, Mar. Biotechnol. 9, 117–127 (2007) ArticleCASGoogle Scholar
- W. Fenical, P.R. Jensen: Developing a new resource for drug discovery: Marine actinomycete bacteria, Nat. Chem. Biol. 2, 666–673 (2006) ArticleCASGoogle Scholar
- L. Bohlin, U. Göransson, C. Alsmark, C. Wedén, A. Backlund: Natural products in modern life science, Phytochem. Rev. 9, 279–301 (2010) ArticleCASGoogle Scholar
- J.W. Blunt, B.R. Copp, R.A. Keyzers, M.H. Munro, M.R. Prinsep: Marine natural products, Nat. Prod. Rep. 30, 237–323 (2013) ArticleCASGoogle Scholar
- R.A. Hill: Marine natural products, Annu. Rep. B (Organ. Chem.) 108, 131–146 (2012) ArticleCASGoogle Scholar
- W.H. Gerwick, B.S. Moore: Lessons from the past and charting the future of marine natural products drug discovery and chemical biology, Chem. Biol. 19, 85–98 (2012) ArticleCASGoogle Scholar
- E. Fattorusso, W.H. Gerwick, O. Taglialatela-Scafati: Handbook of Marine Natural Products (Springer, New York 2012) BookGoogle Scholar
- S. Agatonovic-Kustrin, D. Morton, C. Kettle: Structural characteristics of bioactive marine natural products. In: Marine Biomaterials: Characterization, Isolation, and Applications, ed. by S.-K. Kim (Taylor Francis, Boca Raton 2013) Google Scholar
- A. Mayer, A.D. Rodríguez, R.G. Berlinck, N. Fusetani: Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action, Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 153, 191–222 (2011) Google Scholar
- M. Schumacher, M. Kelkel, M. Dicato, M. Diederich: Gold from the sea: Marine compounds as inhibitors of the hallmarks of cancer, Biotechnol. Adv. 29, 531–547 (2011) ArticleCASGoogle Scholar
- I. Orhan, B. Şener, M. Kaiser, R. Brun, D. Tasdemir: Inhibitory activity of marine sponge-derived natural products against parasitic protozoa, Mar. Drugs 8, 47–58 (2010) ArticleCASGoogle Scholar
- D.S. Dalisay, B.I. Morinaka, C.K. Skepper, T.F. Molinski: A tetrachloro polyketide Hexahydro-1H-isoindolone, Muironolide A, from the marine sponge Phorbas sp. Natural products at the nanomole scale, J. Am. Chem. Soc. 131, 7552 (2009) ArticleCASGoogle Scholar
- P. Proksch, A. Putz, S. Ortlepp, J. Kjer, M. Bayer: Bioactive natural products from marine sponges and fungal endophytes, Phytochem. Rev. 9, 475–489 (2010) ArticleCASGoogle Scholar
- I. Wijesekara, N.Y. Yoon, S.-K. Kim: Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits, Biofactors 36, 408–414 (2010) ArticleCASGoogle Scholar
- N.L. Thakur, U. Hentschel, A. Krasko, C.T. Pabel, A.C. Anil, W.E.G. Müller: Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense, Aquat. Microb. Ecol. 31, 77–83 (2003) ArticleGoogle Scholar
- R. Solanki, M. Khanna, R. Lal: Bioactive compounds from marine actinomycetes, Indian J. Microbiol. 48, 410–431 (2008) ArticleCASGoogle Scholar
- R. Subramani, W. Aalbersberg: Marine actinomycetes: An ongoing source of novel bioactive metabolites, Microbiol. Res. 167, 571–580 (2012) ArticleCASGoogle Scholar
- S.V. Sperstad, T. Haug, H.-M. Blencke, O.B. Styrvold, C. Li, K. Stensvåg: Antimicrobial peptides from marine invertebrates: Challenges and perspectives in marine antimicrobial peptide discovery, Biotechnol. Adv. 29, 519–530 (2011) ArticleCASGoogle Scholar
- F.G. Camacho, J.G. Rodríguez, A.S. Mirón, M. Garcia, E. Belarbi, Y. Chisti, E.M. Grima: Biotechnological significance of toxic marine dinoflagellates, Biotechnol. Adv. 25, 176–194 (2007) ArticleCASGoogle Scholar
- J. Kennedy, N. O'Leary, G. Kiran, J. Morrissey, F. O'Gara, J. Selvin, A. Dobson: Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems, J. Appl. Microbiol. 111, 787–799 (2011) ArticleCASGoogle Scholar
- R.S. Rasmussen, M.T. Morrissey: Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52, 237–292 (2007) ArticleCASGoogle Scholar
- M. Venegas-Calerón, O. Sayanova, J.A. Napier: An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids, Prog. Lipid Res. 49, 108–119 (2010) ArticleGoogle Scholar
- R. Tharanathan, K. Prashanth: Chitin/chitosan: modifications and their unlimited application potentialdan overview, Trends Food Sci. Technol. 18, 117–131 (2007) ArticleGoogle Scholar
- J.-K. Francis Suh, H.W. Matthew: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomaterials 21, 2589–2598 (2000) ArticleCASGoogle Scholar
- G. Crini, P.-M. Badot: Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci. 33, 399–447 (2008) ArticleCASGoogle Scholar
- M.L. Kang, C.S. Cho, H.S. Yoo: Application of chitosan microspheres for nasal delivery of vaccines, Biotechnol. Adv. 27, 857–865 (2009) ArticleCASGoogle Scholar
- S. Bahmani, G. East, I. Holme: The application of chitosan in pigment printing, Color Technol. 116, 94–99 (2000) ArticleCASGoogle Scholar
- V. Morya, J. Kim, E.-K. Kim: Algal fucoidan: Structural and size-dependent bioactivities and their perspectives, Appl. Microbiol. Biotechnol. 93, 71–82 (2012) ArticleCASGoogle Scholar
- J. Venkatesan, S.-K. Kim: Chitosan composites for bone tissue engineering—An overview, Mar. Drugs 8, 2252–2266 (2010) ArticleCASGoogle Scholar
- T.H. Silva, A.R. Duarte, J. Moreira-Silva, J.F. Mano, R.L. Reis: Biomaterials from marine-origin Biopolymers. In: Biomimetic Approaches for Biomaterials Development, ed. by J.F. Mano (Wiley, Weinheim 2012) pp. 1–23 ChapterGoogle Scholar
- J.H. Waite, C.C. Broomell: Changing environments and structure–property relationships in marine biomaterials, J. Exp. Biol. 215, 873–883 (2012) ArticleCASGoogle Scholar
- S.-K. Kim, F. Karadeniz, M.Z. Karagozlu: Treatment of obesity and diabetes with marine-derived biomaterials. In: Marine Biomaterials: Characterization, Isolation, and Applications, ed. by S.-K. Kim (Taylor Francis, Boca Raton 2013) p. 437 ChapterGoogle Scholar
- S.-K. Kim: Marine Biomaterials: Characterization, Isolation, and Applications (Taylor Francis, Florida 2013) BookGoogle Scholar
- C. Zhang, X. Li, S.-K. Kim: Application of marine biomaterials for nutraceuticals and functional foods, Food Sci. Biotechnol. 21, 625–631 (2012) ArticleCASGoogle Scholar
- N. Nwe, T. Furuike, H. Tamura: Isolation and characterization of chitin and chitosan as potential biomaterials. In: Marine Biomaterials: Characterization, Isolation, and Applications, ed. by S.-K. Kim (Taylor Francis, Florida 2013) p. 45 ChapterGoogle Scholar
- S.-K. Kim, I. Bhatnagar, R. Pallela: Microbial biomaterials and their applications. In: Marine Biomaterials: Characterization, Isolation, and Applications, ed. by S.-K. Kim (Taylor Francis, Florida 2013) p. 457 ChapterGoogle Scholar
- C. Bogen, V. Klassen, J. Wichmann, M.L. Russa, A. Doebbe, M. Grundmann, P. Uronen, O. Kruse, J.H. Mussgnug: Identification of Monoraphidium contortum as a promising species for liquid biofuel production, Bioresour. Technol. 133, 622–626 (2013) ArticleCASGoogle Scholar
- A.F. Ferreira, L.A. Ribeiro, A.P. Batista, P.A.S.S. Marques, B.P. Nobre, A.M.F. Palavra, P.P. da Silva, L. Gouveia, C. Silva: A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses, Bioresour. Technol. 138, 235–244 (2013) ArticleCASGoogle Scholar
- J.C. Frigon, F. Matteau-Lebrun, R. Hamani Abdou, P.J. McGinn, S.J.B. O'Leary, S.R. Guiot: Screening microalgae strains for their productivity in methane following anaerobic digestion, Appl. Energy 108, 100–107 (2013) ArticleCASGoogle Scholar
- A.D. Hughes, K.D. Black, I. Campbell, K. Davidson, M.S. Kelly, M.S. Stanley: Does seaweed offer a solution for bioenergy with biological carbon capture and storage?, Greenh. Gases: Sci. Technol. 2, 402–407 (2012) ArticleCASGoogle Scholar
- J. Lu, Y. Zhang: Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China, Ecol. Eng. 52, 175–181 (2013) ArticleGoogle Scholar
- J.H. Park, H.C. Cheon, J.J. Yoon, H.D. Park, S.H. Kim: Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass, Inter. J. Hydrog. Energy 38, 6130–6136 (2013) ArticleCASGoogle Scholar
- P.G. Stephenson, C.M. Moore, M.J. Terry, M.V. Zubkov, T.S. Bibby: Improving photosynthesis for algal biofuels: Toward a green revolution, Trends Biotechnol. 29, 615–623 (2011) ArticleCASGoogle Scholar
- B. Sialve, N. Bernet, O. Bernard: Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnol. Adv. 27, 409–416 (2009) ArticleCASGoogle Scholar
- A.D. Hughes, M.S. Kelly, K.D. Black, M.S. Stanley: Biogas from Macroalgae: Is it time to revisit the idea?, Biotechnol. Biofuels 5, 1–7 (2012) ArticleGoogle Scholar
- C.S. Jones, S.P. Mayfield: Algae biofuels: versatility for the future of bioenergy, Curr. Opin. Biotechnol. 23, 346–351 (2012) ArticleCASGoogle Scholar
- T. Burton, H. Lyons, Y. Lerat, M. Stanley, M.B. Rasmussen: A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland (Sustainable Energy Ireland-SEI, Dublin 2009) Google Scholar
- T. Matsunaga, M. Matsumoto, Y. Maeda, H. Sugiyama, R. Sato, T. Tanaka: Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production, Biotechnol. Lett. 31, 1367–1372 (2009) ArticleCASGoogle Scholar
- T.T.Y. Doan, B. Sivaloganathan, J.P. Obbard: Screening of marine microalgae for biodiesel feedstock, Biomass Bioenergy 35, 2534–2544 (2011) ArticleCASGoogle Scholar
- M. Matsumoto, H. Sugiyama, Y. Maeda, R. Sato, T. Tanaka, T. Matsunaga: Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production, Appl. Biochem. Biotechnol. 161, 483–490 (2010) ArticleCASGoogle Scholar
- P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer: Second generation biofuels: High-efficiency microalgae for biodiesel production, Bioenergy Res. 1, 20–43 (2008) ArticleGoogle Scholar
- W.R. Jones: Practical applications of marine bioremediation, Curr. Opin. Biotechnol. 9, 300–304 (1998) ArticleCASGoogle Scholar
- M. Milanese, E. Chelossi, R. Manconi, A. Sara, M. Sidri, R. Pronzato: The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture, Biomol. Eng. 20, 363–368 (2003) ArticleCASGoogle Scholar
- K. Watanabe: Microorganisms relevant to bioremediation, Curr. Opin. Biotechnol. 12, 237–241 (2001) ArticleCASGoogle Scholar
- T. Matsunaga, H. Takeyama, T. Nakao, A. Yamazawa: Screening of marine microalgae for bioremediation of cadmium-polluted seawater, Prog. Ind. Microbiol. 35, 33–38 (1999) ArticleCASGoogle Scholar
- Y. Cohen: Bioremediation of oil by marine microbial mats, Int. Microbiol. 5, 189–193 (2002) ArticleCASGoogle Scholar
- Marine Biotechnology: ERA-NET and Marine Biotechnology international summary, available online at http://www.marinebiotech.eu/wiki/Marine_Biotechnology_international_summary
Author information
Authors and Affiliations
- Department of Marine-Bio. Convergence Science Specialized Graduate School Science & Technology Convergence Marine Bioprocess Research Center, Pukyong National University, Yongdang Campus, 365, Sinseon-ro, Nam-gu, 608-739, Busan, Korea Se-Kwon Kim Prof.
- Department of Marine-Bio Convergence Science, Pukyong National University, 608-737, Busan, Korea Jayachandran Venkatesan
- Se-Kwon Kim Prof.